Intro

Data Management and Processing

Zack Jaggers

22 April, 2020
handout and files: http://zjaggers.com/resources/DataMgmtWorkshop/

This workshop: how to work with the data you’ve collected, and make it analyzable.

Keeping the end state in mind, from the beginning

— Ultimately, you want your data to be in a state that can be submitted to analysis.
— So, at every step, you’ll want to think about

o what that ideal end state is, and
o how to help the data you collect resemble or be able to get to that state.

Pragmatics: the real world
— The data you collect won’t be in that state already. (i.e., why this workshop exists)
— So, at every step, you’ll want to make sure that

o you have the pieces of information you’ll need in your analysis,
o you can trace it to originals (in case things are separated, altered, or moved), and
o you can easily connect pieces to each other that will need to be connected.

Foreshadow/summary

Tools

the goal state: one dataset

— unique rows per observation (data points)
— unique columns per factor of interest (ways to splice/dice/group the observations)
— including, while preferably limited to, all observations of interest

getting there

— Know your factors of interest and identify their values for each observation, somewhere.
o usually factors of the stimulus, study condition, and subject

— Have reference datasets where these factors are treated as observations w/ info.

o Make these just like another dataset — spreadsheet format.
o Keep a separate record of how you’ve labeled and moved your data — can be prose.

— Combine and restructure your raw data (as necessary) to reach the goal state.

best practices for tracking information, considering ease for joining it all later on
binding/concatenating: joining complementary sets of observations of same info structure
joining/merging complementary sets of information that observation sets don’t fully specify
recoding, separating: dealing (w/in-script) with labels that weren’t ideal
subsetting/filtering: limiting dataset only to observations of interest

reshaping: e.g., multiple observations per row in starting point (e.g., experiment output)

1. Compiling your data — tracking all the information to be combined

Often, your data output doesn’t already have all the information of interest to your analysis neatly
lumped into one tidy spreadsheet.

e You probably want to analyze the observations from multiple subjects together, but they're
likely in different output spreadsheets.
e And those spreadsheets might not have all the information you want for each observation:

— Say you have acoustic measurements of subjects’ utterances from a Praat script.

— But, the script output didn’t include information like subject’s language background, sex.

— And, if you were using particular audio stimuli to elicit the productions, you might care
about aspects of those stimuli, which the script might also not have given you.

subject number dur burstamplitude relativeamplitude burstintensity centre standarddeviation skewness kurtosis

1147 1 0.21052078 0.38448413 0.38448413 76.07534 8369.741 1599.6368 0.39877032 0.9450733
1147 2 0.22455824 0.42401827 0.42401827 75.65832 8015.472 1345.6225 0.49684827 1.6921066
1147 3 0.21522110 0.48710634 0.48710634 76.11007 6443.952 1404.3482 0.12385313 1.6312209
1147 4 0.09286092 0.53906238 0.53906238 77.21943 7066.163 2036.6488 1.45529091 3.1332770
1147 5 0.21987847 0.49457863 0.49457863 76.91440 7900.929 2126.4323 1.11891104 2.4470997
1147 6 0.21129741 0.58547986 0.58547986 79.29573 7885.187 1496.5049 0.94093061 5.0461434
subject number dur burstamplitude relativeamplitude burstintensity centre standarddeviation skewness kurtosis

121 1 0.23308422 0.08322433 0.08322433 62.66333 5371.474 1572.4312 1.76206914 8.4170670
121 2 0.19639955 0.07272577 0.07272577 62.52777 7581.468 1641.6613 1.09444469 3.4817881
121 3 0.27148877 0.08531824 0.08531824 64.31565 9686.342 1607.2079 0.71779843 2.6073857
121 4 0.16164774 0.07694653 0.07694653 59.40878 8952.451 1962.8496 0.56381513 1.2972799
121 5 0.07025083 0.04952088 0.04952088 55.85620 7455.504 2386.8559 0.94449446 1.5305935
121 6 0.21073692 0.06141520 0.06141520 58.14696 9434.217 1843.7122 0.89597016 3.5077553

What do you do? Hopefully, you’ve thought ahead some about being able to track this information
and combine it into a unified dataset in the future:

e |D: Ideally each subject has a separate ID (see ‘subject’ column above), so when you combine
their observations together, you can still tell them apart.

— This way, you can associate each Praat script observation with its subject.
— There’s a way you can get this from the filename, which probably is or at least includes
the subject ID. (Most Praat scripts produce this. See ID/filename extraction below.)

e Subject info tracking: ldeally, you gathered the information you care about (e.g., language
background, sex) for each subject.

— And ideally, you have this associated with the same ID that your other observations are
associated with.

o Now (whew!), you know that even if you don’t have all that information together
right now, it’s possible to, say, create new info columns for each

subject lang sex
observation in the output from your Praat script, and fill them in 1147 Basque F
with this info you have stored. 121 Basque F
1331 Basque M
— Better/easier yet, if you have this information stored in a structure 1425 Basque | M
just like another dataset, you can automate that process. 1440 Basque M
1470 Basque F

Takeaway:

The same would go for stimulus information: If it will be relevant to your analysis, but it
wasn’t included in your observation output...

You should have a way to ID the stimulus (maybe it’s word, or audio stimulus filename).
And you should be able to track which one corresponds to each observation utterance:

o) Maybe th|s is by having Segmented the WOI’d stimFile stim stimSpkr continuum segment
. sazalL19 saza LL 19 s
and stored the info of all words segmentedasa .., ,
dataset tO refer tO. saxalL19 saxa LL 19 s
saxallLl saxa LL 1 X

o Maybe this is by having kept a record of the order of stimulus subiect ~ number ~ stimFile
presentation each subject was exposed to. In this case, you'll ¥ sazaltls
need to keep both subject and observation order in mind 1147
when combining this information. (This is also totally doable, 1147
so long as you’ve kept records, in the form of datasets: see 1147
below.) il

1147 sazalll
saxalL19
saxalLl
sazalll

sazall19

N O A W N e

1147 saxalL19

Your data might not all come out ready-to-analyze. But your life will be easier the more you
make sure you track relevant information, and think about how you’ll plug it into analysis.

Observation responses/measurements
Subject info

Stimulus info

Condition or exposure presentation info
Ways of connecting all of these things.

Tips

The fewer chain links, the better.

o (e.g., How would you identify which ‘segment’ the subject was producing for each
observation from the Praat script output in the first spreadsheets above?)

Format the complementary pieces of info like separate datasets to be combined (see
“Combining your data” below).

Try to keep factor columns consistent across these datasets (e.g., ‘subject’, ‘stimFile’).

If there’s anything else you need to note, but you’re having a hard time formatting it as a
dataset, have a separate document where you can write it out as prose: e.g.,

o work progress
o instruction guides

o logs of file inventory, changes, or movements

o writeup of questions or issues w/ data processing and how they were resolved

o keys for codes or abbreviations used in datasets

For the next steps, I’'m going to walk you through some R tools and commands. This isn’t

meant as a full-on intro to R, but a data management tutorial using R. Most everything
should be doable with just basic R and RStudio, and the tidyverse package.

2. Combining your data — concatenating and merging

Why did you want your separate info sets structured like datasets? So you can easily combine them!

e First, what about all those different Praat script outputs from different subjects? You want
those together in one dataset if you’re going to compare subjects with each other.

You can row-bind data sets, vertically stacking them if they have identical column
structures. I’'ve provided a script (CombineFiles.R) that combines all datasets located in
one directory. The main content of it is duplicated here:

#Set working directory to that where script resides
sourcedir <- dirname (rstudioapi::getSourceEditorContext () $path)
setwd (sourcedir)

#identify "...csv" files in working directory
filelist <- list.files(path = getwd(), pattern = "*.csv")
#read and combine, storing filename as first column
d <- data frame(filename = filelist) %>% #new dataframe with filenames

mutate (file contents = map(filename, #ready expansion: one contents cell
per filename

~ read csv(file.path(getwd(), .))) #read

contents into nested cells

) $>%

unnest (.) #unnest dataframe cells into one combined dataframe

#Save output as csv in the directory
write.csv(d, file = "CombinedOutput.csv", row.names=FALSE)

e So now, the observations of subjects 1147, 121, etc. will be combined in one dataset, but you
still have ‘subject’ as a column that uses their subject IDs to keep their observations distinct.

nb: This script actually also includes a new ‘filename’ column, in case you didn’t have something like ‘subject’ before.

A note on file storage and folder structure:

e This script and others like it work best if your files are all in the same folder/‘directory’.

Ideally, that’s why your filenames also have information that uniquely distinguishes the
files from each other, and you’ve set up your experiment or analysis scripts to store and
label files in this way.

But, say, you have separate folders, rather than files for each subject, and multiple files
per subject that would otherwise have identical file names (see image v iz

example) v perception
' [posttest.csv
o Ifyouadda recursive=TRUE argumenttothe list.files() . :m;’ui::;“
command, you can search subdirectories and store filepath @) posttest.csv
. . . . a test.
information as well: e.g., 121/training/blockl.csv oy T
o (Below we’ll talk about parsing and splitting column info.) o pockes
lOCKZ2.CSsV
o You'll want to make sure that your folder structures, labels, and @ block3.csv
. v 147
contents within are consistent if taking this approach. v B pecception
o a ttest.
— Other datasets containing complementary reference information, like B orotestony
subject info or stimulus info, should be stored outside the directory v ‘;'0"““::"‘
. . . . posttest.csv
housing the observation files you want to combine. @ pretest.csv
v training
a1 @. blockl.csv
Filling out your observations with complementary information: R B

@. block3.csv

e Now you can join your datasets: Observations can be combined with complementary
information you stored about subjects and stimuli.
(R base calls this ‘merge’; dplyr and SQL call this ‘join’)
— Using the left join() command from dplyr, you can add to a dataset of observations
(first argument) columns of complementary information (second argument) so long as
there is a matching ID column.
> d <- left join(d.praatObsvs, d.subjInfo)
Joining, by = “subject”
o Notice how, above, the matching ‘subject’ column between the two datasets was

found automatically. You can manually specify it with a third by=" "~ argument.
(You can also manually specify if the columns to be matched across datasets differ in their titles;
but it’s much better if you’ve been consistent from the start.)

e So now, subject info columns are added, with the values matching their subject IDs.

“ subject number dur bur i relati litude bursti i centre standarddeviati kurtosis lang sex
1 1147 1 0.21052078 0.38448413 0.38448413 76.07534 8369.741 1599.6368 0.39877032 0.9450733 Basque F
2 1147 2 0.22455824 0.42401827 0.42401827 75.65832 8015.472 1345.6225 0.49684827 1.6921066 Basque F
3 1147 3 0.21522110 0.48710634 0.48710634 76.11007 6443.952 1404.3482 0.12385313 1.6312209 Basque F
81 1331 1 0.12686147 0.06855670 0.06855670 60.56051 6413.407 1186.2368 4.27509877 34.3787446 Basque

82 1331 2 0.13289941 0.03067148 0.03067148 54.06228 6105.565 1335.9205 3.19925631 19.6116029 Basque

83 1331 3 0.09909829 0.04845219 0.04845219 51.99028 6896.982 1484.8244 2.49442014 15.8894447 Basque

Chain-joins:

e Notice that, for our dataset, we have the utterance number of each observation per speaker.

— Or, if you don't, so long as you’re sure your rows are in the right order:

d <- d %$>% group by (subject) %>% mutate (number = row number())

e We also have a separate record per subject of the order of stimuli that elicited each utterance
(‘stimFile’).

e We have a record with more stimulus details; but it’s separate from the stimulus presentation
record, and it’s not directly traceable to the full observation dataset: It doesn’t share any ID
columns with it.

— Combine your stimulus presentation records per subject, row-binding them like
observation datasets.
— Join them with the additional stimulus information, giving them more detail.

“ subject number stimFile stim

1 1147 1 sazall1l9 saza LL 19 s

2 1147 2 sazalll saza LL 1 z

3 1147 3 saxallL19 saxa LL 19 s
81 1331 1 saxalll saxa LL 1 X
82 1331 2 sazalll saza LL 1 z
83 1331 3 sazallL1l9 saza LL 19 s

e Now you can join this dataset with the dataset of Praat script observations...

Joining by multiple conditions:

e Notice that you'll need both subject ID and utterance number to match each utterance
observation’s Praat script measurements with its stimulus details: i.e.,

— It’s not the case that each subject saw only one stimulus;
— andit’s not the case that stimulus presentation order (‘number’ and how it matched with
‘stimFile’) was the same for every subject.

e You can specify a set of multiple columns as criteria for your join () command:
d <- left join(d, d.subjStimOrder, by=c(“subject”, “number”))

nb: Be mindful about which dataset you're specifying as the left argument. That one is treated as the base that the other is being
added to, and it shouldn’t be missing observations of interest. (See online guides about dplyr and SQL join types.)

3. Recoding and separating values

In actuality, the data | showed you above had already been pre-cleaned a bit.

Remember: Keep the ideal in mind and aim for it.

Instead of having subject IDs neatly provided by the Praat script, the output looked more like this (a
similar dataset). It just spat out the filename shared by both the .wav and .textgrid files we
segmented (ID###_T#_DAY#), and appended a bunch of details about the script at the end.

filename number duration intensity cog sdev skew kurt
ID104_T2_DAY1_logfile_fricatives_15ms_6_300Hz... 1 0.2840903569830395 57.82005 5059.4202 2579.6280 2.350851131 6.43765419
ID104_T2_DAY2_logfile_fricatives_15ms_6_300Hz... 1 0.18354696264471215 59.15340 10580.5580 2454.3661 0.189959972 -0.03913441
ID104_T5_DAY1_logfile_fricatives_15ms_6_300Hz... 1 0.2181750667604554 57.98522 4843.0501 2455.2132 1.537218155 2.17003449
ID104_T5_DAY2_logfile_fricatives_15ms_6_300Hz... 1 0.19176232993197218 52.49527 7343.6240 3047.8485 1.012492730 1.09684146
ID107_T2_DAY1_logfile_fricatives_15ms_6_300Hz... 1 0.3216985915655499 61.94534 5604.9243 2002.0424 1.839570443 6.40118458
ID107_T2_DAY2_logfile_fricatives_15ms_6_300Hz... 1 0.26232167958394115 60.46642 6239.6546 2080.9135 1.541029870 2.67942930
ID107_T5_DAY1_logfile_fricatives_15ms_6_300Hz... 1 0.24321670689781172 57.96996 5975.2941 1957.5270 1.852800844 5.02098140

Rows in this sample are just sorted first by ‘number’, then “filename’, so you can see different filenames:
d <- d %$>% arrange (number, filename)

e Asrecommended above, these filenames were informative to keep the files distinct:

— |D### = subject ID
— T2 vs. T5 = pretest vs. posttest
— DAY1 vs. DAY2 (you get it)

e So we could safely put them in the same directory and combine them (as described above).
e Now, we can make use of these informative variables embedded in the filenames...

Separating values into distinct columns:

e We thought ahead (You should too.) and separated each informative variable in our

filenames by “_”: a common, useful practice. This is why...

d <- d $>% separate(filename,c (“subject”, “phase”, “day”),"“ ”,extra=“drop”)

subject phase day number duration intensity cog sdev skew kurt

ID104 T2 DAY1 1 0.28409036 57.82005 5059.4202 2579.6280 2.350851131 6.43765419
ID104 T2 DAY2 1 0.18354696 59.15340 10580.5580 2454.3661 0.189959972 -0.03913441
ID104 TS DAY1 1 0.21817507 57.98522 4843.0501 2455.2132 1.537218155 2.17003449
ID104 T5 DAY2 1 0.19176233 52.49527 7343.6240 3047.8485 1.012492730 1.09684146
ID107 T2 DAY1 1 0.32169859 61.94534 5604.9243 2002.0424 1.839570443 6.40118458
ID107 T2 DAY2 1 0.26232168 60.46642 6239.6546 2080.9135 1.541029870 2.67942930
ID107 T5 DAY1 1 0.24321671 57.96996 5975.2941 1957.5270 1.852800844 5.02098140
ID107 TS DAY2 1 0.08980949 62.87627 7064.9545 1749.5779 1.476542613 6.46937707

Saying extra= “merge” and specifying a fourth column name would have kept all the extra material in one column and ignored
further “_" separations: useful for keeping around a ‘comments’ column (e.g., segmenting and noting comments w/ “_").

— This separation method would also be useful for column values like
“121/training/blockl.csv” — if you didn’t have unique filenames with your files all
in one place but, instead, had used folder structure to distinguish your files that you
combined.

— (And dplyr's unite () command is a useful counterpart to separate (). It can be useful
for cases like PsychoPy data, combining multiple response columns that are distinct only
because they are in a different condition block, which may already be noted elsewhere in
the row.)

Though see an introduction to pivot () below, converting column info into useful row material.

Recoding values:

e Now, it would just be nice if our values for pretest vs. posttest phase were a little clearer...

d <- d %>% mutate(phase= recode (phase, T2= “pretest”, T5= “posttest”))

subject phase day number duration intensity cog sdev skew kurt

ID104 pretest DAY1 1 0.28409036 57.82005 5059.4202 2579.6280 2.350851131 6.43765419
ID104 pretest DAY2 1 0.18354696 59.15340 10580.5580 2454.3661 0.189959972 -0.03913441
ID104 posttest DAY1 1 0.21817507 57.98522 4843.0501 2455.2132 1.537218155 2.17003449
ID104 posttest DAY2 1 0.19176233 52.49527 7343.6240 3047.8485 1.012492730 1.09684146
ID107 pretest DAY1 1 0.32169859 61.94534 5604.9243 2002.0424 1.839570443 6.40118458
ID107 pretest DAY2 1 0.26232168 60.46642 6239.6546 2080.9135 1.541029870 2.67942930
ID107 posttest DAY1 1 0.24321671 57.96996 5975.2941 1957.5270 1.852800844 5.02098140
ID107 posttest DAY2 1 0.08980949 62.87627 7064.9545 1749.5779 1.476542613 6.46937707

— You could also have performed these commands at the same time for the same result:

d <- d %>%
separate (filename, c (“subject”, “phase”, “day”), " ”,extra="“drop”) %>%

mutate (phase= recode (phase, T2= “pretest”, T5= “posttest”))

w

dplyr’s $>% syntax allows you to immediately carry over the results of one command
as the state and argument for subsequent commands.

4. Filtering/subsetting your data

Say you want to only look at some of the data you collected.

e Conditions of interest

For example, Say we want to just look at Day 1 of our experiment. The following
command will limit our dataset to just those observations.
d <- d $>% filter(day == “DAY1”)
— Or, Say we want to look at Day 1, and also posttest from Day2: i.e.,
o We'llinclude all Day 1 data (pre- and post-test), and all posttest data.
d <- d %>% filter(day == “DAY1l” | phase == “posttest”)
Translation: Limit data to rows where day = “DAY1” or (|) where phase = “posttest”.

— Or, Say we want to look at only Day 1’s posttest results: Either of the following
commands will achieve this.
d <- d %>% filter(day == “DAY1l” & phase == “posttest”)
Translation: Limit data to rows where day = “DAY1” and phase = “posttest”.
d <- d %>% filter(day == “DAY1l”, phase == “posttest”)
Translation: Limit data to rows where day = “DAY1”. Also limit data to rows where phase = “posttest”.

— Or, Say we want to look at 2-day learning: i.e., Say we want to compare Day 1’s pretest
and Day2’s posttest.

d <- d %>% filter((day=="DAY1l” & phase==“pretest”) | (day=="“DAY2"” &
phase=="“posttest”)) Can you provide the translation?

There’s a whole range of ways that you can filter your data, which | won’t fully expound here.

e You can use syntax like < and > to limit your data to ranges of numeric factor values.
— useful for things like excluding outliers
e You can use syntax like $in% c(™...”, “...”) tolimit your data to values that are within
a pre-specified set.
— useful for narrowing your dataset to only certain categories
o such as looking at only a certain set of sounds, while you’ve segmented and coded for
a wide variety of sounds

e Oryou can use !=if you know you just need to exclude rows matching a particular value.

Just browse online for dplyr functions and logical operators.
Sometimes you want to keep your data, but group it.

e There are other useful functions like group by () and summarize (), which you can look up
and learn more about. These can be useful for performing functions on your data that depend
on certain conditions: e.g.,

— creating a new variable (piped $>% before the mutate () function) dependent on criteria
— collapsing condition groups into averages

5. Reshaping your data
Sometimes you’ll be forced to deal with a data output that’s very from the ideal state to work with.

Qualtrics and PsychoPy, for example, are two platforms that we use to get our data, but we don’t
have much say on what the output looks like.

For example, here is a Qualtrics study with a randomized set of stimulus exposures that we used the
Loop & Merge tool to automatically plug in from a spreadsheet we uploaded.

See my Qualtrics Workshop handout, and a specific example on using a randomized Loop & Merge, and tracking display order
with invisible questions:

http://zjaggers.com/resources/QualtricsWorkshop/

http://zjaggers.com/resources/QualtricsWorkshop/Appendl LoopMergeWBlockBreaks.pdf

In the example experiment below, I've

e created a question that will display a stimulus (Field 1) and elicit a response {a,b,c,d}
e created an invisible question named ‘stimFile’ that will record a response as if the subject
entered the contents of Field 2

e created another invisible question named ‘loopNum’ that will record a response as if the
subject entered the current loop number

Across-block randomization - Remove Final Display Loop & Merge

v Default Question Block NEARIIEANE-G] Tum off Loop & Merge Loop & Merge is turned on for this block
ick "Turn off Loop & M top loopin

${lm://Field/1}

@ Loop based off of a question:
a
0 b

c

4

Field1 Field2 @ ©

d
() 1 stim1
(-] 2 stim2
Stim file () 3 stim3
() 4 stim4
" ${lm://Field/2} y e s J—
(X
-] 6 stimé
. (—) 7 stim?7
() 8 stim8
(-] 9 stim9
(-] 10 stim10
Loop number ° n imi
${lm://CurrentLoopNumber} (-] 12 stim12

0

Randomize loop order

Present only of total Loops

| ran through this short demo experiment a couple times to show you the output:

StartDate EndDate Progress Duration (in seconds) Finished RecordedDate Responseld
Start Date End Date Progress Duration (in seconds) Finished Recorded Date Response 1D
{"Importld":"startDate","timeZone":"America/Denver"} {*Importld":*endDate","timeZone":"America/Denver") {"Importld":"progress™} {"Importld":"duration"} {“Importid":"finished"} {"Importid": ,"timeZone": } {"Importid":*_recordld"}

2020-04-16 12:56:05 2020-04-16 12:56:44 100 38 True 2020-04-16 12:56:44 R_3MSUPbTAEPXAILE

2020-04-16 12:57:00 2020-04-16 12:57:46 ves 100 as True 2020-04-16 12:57:46 R_1DVcBgFALGEM2dB

e You get a bunch of ID info, and for some reason 3 header rows, then your observation info.

First, you can get rid of your first two ‘rows’, keeping just what R processed as the actual
header and everything else: in this case, 2 separate subjects.
d <- d %>% slice(3:n())

Translation: Slice your data to keep only that starting from row 3 to the end (the row numbered with the total row count).

Also, you can select () certain columns if you know only some are of interest.

o You could run the » colnanes(d)
[1] "StartDate" "EndDate" "Status" "IPAddress" "Progress"
comma nd [6] "Duration (in seconds)" "Finished" "RecordedDate" "Responseld" "RecipientLastName"
[11] "RecipientFirstName" "RecipientEmail” "ExternalReference” "LocationLatitude" "LocationLongitude"
[16] "DistributionChannel™ "UserLanguage" "1_stimResponse" "1_stimFile" "1_loopNum"
COlnames (d) to [21] "2_stimResponse" "2_stimFile" "2_loopNum" "3_stimResponse" "3_stimFile"
H [26] "3_loopNum" "4_stimResponse" "4_stimFile" "4_loopNum" "5_stimResponse"
See a numbered IISt [31] "S_stimFile" "5_loopNum" "6_stimResponse" "6_stimFile" "6_loopNum"
[36] "7_stimResponse" "7_stimFile" "7_loopNum" "8_stimResponse” "8_stimFile"
Of CO|Umn na mes. [41] "8_loopNum" "9_stimResponse" "9_stimFile" "9_loopNum" "10_stimResponse”
[46] "10_stimFile" "10_loopNum" "11_stimResponse" "11_stimFile" "11_loopNum"
o Then you could use [51] "12_stinResponse” "12_stinFile" "12_loopNum"

d <- d %>% select(1,9:53) to pick columns 1 and 9-53.
o Oryou could identify a set like colsOfInterest and either include them by
selecting that set or exclude them by selecting the negated set: e.g.,

colsOfInterest <- c(“ResponseId”, “RecordedDate”, “UserLanguage”)
d <- d %>% select(colsOfInterest) #to include; Or...
d <- d %>% select(-colsOfInterest) #to exclude

Pop quiz: How does select () differ from filter ()?

Let’s say we selected the colsOfInterest we identified as subject ID info, and cols 18-
53, the ones with observation info.

Now, let’s look at the observation info, past the subject ID info:

1_stimResponse 1_stimFile 1_loopNum 2_stimResponse 2_stimFile 2_loopNum 3_stimResponse 3_stimFile 3_loopNum
c stiml 7 a stim2 1 d stim3 10

d stiml 11 a stim2 3 a stim3 1

e For each loop, there are 3 columns: one for each question that had a ‘response’.

Each column starts with the row number of the loop.
nb: This is not the contents of Field 1. This would have been “1_", “2_", etc. even if Field 1 of the L&M were “wug”, “schwa”, etc.

After “_" comes the question name.

The cell contents provide the ‘responses’ stored (including automatic-because-hidden ones).

The ‘stimResponse’ column provides the actual answer to the multiple choice question.
‘stimFile’ records Field 2: This is how we know the columns go in order of rows.
‘loopNum’ records which loop pass in the randomized order this L&M row was activated.

Really, each of these triplets represents the factor values of a single observation per participant:

There should just be columns for ‘stimResponse’, ‘stimFile’, and ‘loopNum’.
And the contents of the ‘1_’, 2_’, ‘3_’, etc. groups should be stacked on top of each other

...while repeating all of the subject ID info in each row.

Here’s where we use dplyr's pivot () function:

10

We’re wanting to ‘lengthen’ our dataset in the end.

But to do that, we’re actually going to reeeally lengthen it, and then widen it back some.
Below, I'll break this up into two parts. Here's the full command in advance:

d <-d

o o
5>%

pivot longer (-colsOflInterest,

names_to = c("LMRow",
names_sep = "_") %>%

pivot wider (names_ from
values from =

"value")

"variable"),

"variable",

e In the first part, we identify the columns that we want repeated as ID info for every
observation. This will take the value of each cell in our data and make up only one (very
long) column. But we keep track of what variable each value belonged to by extracting that
from the original column name, as well as the L&M row.

pivot longer (-colsOflInterest,

names to =
names_sep = " ")

“ Responseld

1
2
3
4
5
6
7
8
9

R_3MsUPbTAEPXAJ1E
R_3MsUPbTAEPXAJ1E
R_3MsUPbTAEpXAJ1E
R_3MsUPbTAEpXAJ1E
R_3MsUPbTAEPXAJ1E
R_3MsUPbTAEPXAJ1E
R_3MsUPbTAEPXAJ1E
R_3MsUPbTAEpXAJ1E
R_3MsUPbTAEpXAJ1E

¢ ("LMRow",

"variable"),

#how original col name divided

RecordedDate

2020-04-16 12:56:44
2020-04-16 12:56:44
2020-04-16 12:56:44
2020-04-16 12:56:44
2020-04-16 12:56:44
2020-04-16 12:56:44
2020-04-16 12:56:44
2020-04-16 12:56:44
2020-04-16 12:56:44

UserLanguage

EN
EN
EN
EN
EN
EN
EN
EN
EN

LMRow

W W W NNN R e e

variable
stimResp
stimFile
loopNum
stimResp
stimFile
loopNum
stimResp
stimFile

loopNum

onse

onse

onse

#constant/ID info cols
#destination

of
in

value
c
stiml
7
a
stim2
1
d
stim3

10

original col name
2

o Now we've split up the info originally in the columns grouped and repeated per observation,
while still keeping it all traceable. In the second part, we regroup the observation values by
turning their variables back into columns again, this time leaving L&M rows as separate
observation rows (like they should be) rather than column groups.

pivot wider (names from = "variable",
values from = "value")

“ Responseld

R_3MsUPbTAEpXAJ1E
R_3MsUPbTAEpXAJ1E
R_3MsUPbTAEpXAJ1E
R_3MsUPbTAEPXAJ1E
R_3MsUPbTAEpXAJ1E

#restore cols w/out LM row numbers
#source col of each new col*row’s value

Remember/notice how we were able to pipe the results of the first part right into the second part.

RecordedDate

2020-04-16 12:56:44
2020-04-16 12:56:44
2020-04-16 12:56:44
2020-04-16 12:56:44

2020-04-16 12:56:44

UserLanguage

EN
EN
EN
EN
EN

6. Conclusion

LMRow

1

uos woN

stimResponse

stimFile

stiml
stim2
stim3
stim4

stim5

loopNum
7

1

10

5

8

e This by no means covers all the tools for data management and processing.
e The takeaways are that...

— You can process your data even when it’s not in an ideal state.
— It probably won’t be in an ideal state no matter what you do.
— There’s a lot you can and should do to help your data be manageable.

o It'll be a lot easier to get to that ideal state if you’ve kept it in mind and implemented
measures along the way that’ll facilitate these processes.

11

