Acoustic cues to the [j]-[i] distinction in American English

Acoustical Society of America Jacksonville, FL 11-04-2015

Zack Jaggers

Study Aims

- To test whether American English has a glidevowel distinction ([i] vs. [j]) occurring in uniform C_V environments.
- To identify what acoustic aspects most consistently convey any such distinction, for the purposes of
 - a) acoustic phonetic documentation,
 - b) comparing phonological representations.

Background

glide-vowel distinctions

Existence

- fully phonologically predictable (Steriade 1984)
 - [j] and [i] are surface allophones of the same phoneme
- a distinction available to the grammar (Levi 2004, 2008)
 - not fully predictable

Background

glide-vowel distinctions

Existence

- fully phonologically predictable (Steriade 1984)
 - [j] and [i] are surface allophones of the same phoneme
- a distinction available to the grammar (Levi 2004, 2008)
 - not fully predictable

Phonological representation

- constriction/height: /j/ = [-vocalic] (Padgett 2008)
- place/articulator: /j/ = Coronal; /i/ = Dorsal (Levi 2008)
- syllabic pre-linking (Levi 2008, Levin 1985)

Methods

- 9 native speakers of American English
- Sentence reading task
 - real words + nonce names (separate blocks, 4 reps each)
 - self-paced slide presentation
 - ½ target stimuli, ½ filler stimuli
 - semi-randomized
 - attention paid to spacing respective glide/vowel-expectant pairs

Setting

- sound-attenuated booth, NYU campus
- Shure SM35-XLR head-mounted microphone
- Marantz PMD 660 audio recorder

Stimuli

real word pairs

By expected pronunciation:

[iV]: Estonia, hernia, millennia, Armenia

[jV]: pneumonia, California, Kenya, gardenia

Example sentences:

The citizens of Estonia protested the decision.

Her pneumonia pushed her into a heavy fever.

Stimuli

nonce names

C			เทเนลเ		non-iniπai	
S _	C_		<i>></i>	<y></y>	<i>></i>	<y></y>
_	Labial	/p_/	Piácho	Pyásha	Nópia	Dápya
		/b_/	Biási	Byásu	Shábia	Chóbya
		/f_/	Fiáki	Fyága	Gófia	Zúfya
		/m_/	Miáshu	Myáchi	Súmia	Fímya
	Coronal	/t_/	Tiágu	Tyáko	Bítia	Pótya
		/d_/	Diáfa	Dyápu	Módia	Vádya
		/s_/	Siáko	Syági	Kúsia	Gísya
		/n_/	Niáfa	Nyápa	Vónia	Búnya
	Dorsal	/k_/	Kiása	Kyáso	Dókia	Púkya
		/g_/	Giáfu	Gyápi	Nágia	Tígya

Last names assigned random honorifics:

Coach Dr. Governor Miss Mr. Mrs. Offi

Coach, Dr., Governor, Miss, Mr., Mrs., Officer, Reverend, Sister

Stimuli

nonce names

Training

- Directions (spoken, face-to-face)
 - Will say sentences with unfamiliar last names.
 - All use the vowels [a], [i], [u], [o].
 - Be consistent: e.g., <g> is always [g].
 - The stressed vowel is marked with an accent.

Practice

- Listen and repeat (honorific + nonce name).
- Say + any feedback (honorific + nonce name).
- Use in full sentence, making sure not to pause.

Example Sentences

Miss Vónia paused the movie.

Judge Búnya paints beautifully.

Example Utterances

and initial observations

Estonia (speaker CH43, utterance 4)

pneumonia (speaker CH43, utterance 3)

[jV]: overall shorter duration less of an apparent targeted climb of F2 earlier fall of F2 transitioning to following vowel greater intensity range (yellow line)

Measurements and Predictions

re: vocalic material from C_ to _C

Place/Articulator (Levi 2008, Halle et al. 2000)

• F2max:

[j] > [i] ([j] more front)

Measurements and Predictions

re: vocalic material from C to C

Place/Articulator (Levi 2008, Halle et al. 2000)

• F2max:

[j] > [i] ([j] more front)

Constriction/Height (Padgett 2008)

• F1min:

[i] > [j] ([j] higher)

Intensity range: [jV] > [iV] ([j] more constricted)

Measurements and Predictions

re: vocalic material from C to C

Place/Articulator (Levi 2008, Halle et al. 2000)

• F2max:

[j] > [i] ([j] more front)

Constriction/Height (Padgett 2008)

• F1min:

[i] > [j] ([j] higher)

Intensity range: [jV] > [iV] ([j] more constricted)

Earliness/Speed (pre-linking account: Levi 2008, Levin 1985)

Duration:

[iV] > [jV] ([jV] only 1syll)

F2max time:

[i] > [j] ([j] = earlier transition) (Chitoran 2002)

• F2 slope:

[j] > [i] ([j] faster) (Liberman et al. 1956, Gay 1968)

(While the other accounts should also predict temporal differences, the pre-linking account should, if anything, predict more centralization of formants for [j].)

Acoustic Cue Analysis

Generalized linear mixed-effects (Glmer) analysis predicting expected outcome

- acoustic measurements scaled and tested against each other as predictors*
- random slopes per speaker (individual differences):
 e.g., speech rate → duration
- terms of interaction with stimulus aspects:

```
e.g., syllable count × duration

C place × F2max time
```


^{*} See Li et al. (2009) for a similar model reversing dependent and independent variables.

Acoustic Cue Results

real word stimuli (predicting expected pronunciation)

	Fixed Effect	Estimate	<i>p</i> -value	
[j] > [i] Int. range		1.2456	1.82e ⁻⁶ ***	
[i] > [j] F1min		5559	.0106 *	LogLik
[i] > [j]	F2max time	6047	.0203 *	-130.5
	duration	9936	.1546	
	F2slope	3641	.393	# of obs
	F2max	.1089	.8674	274

(+ estimate: higher value more likely to come from [j]-expectant stimulus)

[j]: lower intensity (relative to following vowel) higher articulation earlier transition to following vowel not significantly more frontward

Acoustic Cue Results

nonce name stimuli (predicting orthography)

	Fixed Effect	Estimate	<i>p</i> -value	
[i] > [j]	F2max time	3564	.00058 ***	
[i] > [j] Int. range		1985	.00336 **	LogLik
[j] > [i]	F2slope	.1651	.08524 •	-942.9
[i] > [j]	F1min	0988	.09558 •	
	F2max	.1597	.15614	# of obs
	duration	.1062	.37071	1398

(+ estimate: higher value more likely to come from <y> stimulus)

[j]: earlier transition to following vowel faster transition higher articulation

(intensity reversal suspected task effect: att'n to stress placement)

Conclusions

- Distinction? Seems to be one.
- Acoustic cues:
 - F2max earliness most consistent cue: [j] earlier transition than [i]
 - Both real word (sig.) and nonce name (trend) stimuli suggest that
 [j] also has higher articulation (F1min).
- Phonological interpretation:
 - Results support Padgett's (2008) constriction/height-based characterization for this distinction.
 - Results suggest that [j] and [i] do not differ in articulator/frontness.
 - F2max earliness cue dependence could explain apparent constraint against dorsal Cj sequences. (Ohala 1978)

e.g., adaptation of *Tokyo* [to:.kio:] \rightarrow [toʊ.ki.oʊ] (cf. [toʊ.kjoʊ])

Further Directions

Perception

- Do listeners perceive this distinction?
- Do the cue weightings line up with those observed here?

Extension

- Languages previously reported on to support competing representations
- Use of this kind of cue modeling in the acoustic classification of other distinctions

References

- Chitoran, I., 2002. A perception-production study of Romanian diphthongs and glide-vowel sequences. *Journal of the International Phonetic Association* 32, 203–222.
- Gay, T., 1968. Effect of speaking rate on diphthong formant movements. *The Journal of the Acoustical Society of America* 44, 1570–1573.
- Halle, M., Vaux, B., Wolfe, A., 2000. On feature spreading and the representation of place of articulation. *Linguistic Inquiry* 31, 387–444.
- Levi, S. V., 2004. The representation of underlying glides: A cross-linguistic study. Ph.D. thesis, University of Washington.
- Levi, S. V., 2008. Phonemic vs. derived glides. *Lingua* 118, 1956–1978.
- Levin, J., 1985. A metrical theory of syllabicity. Ph.D. thesis, Massachusetts Institute of Technology.
- Li, F., Edwards, J., Beckman, M. E., 2009. Contrast and covert contrast: The phonetic development of voiceless sibilant fricatives in English and Japanese toddlers. Journal of Phonetics 37, 111–124.
- Liberman, A. M., Delattre, P. C., Gerstman, L. J., Cooper, F. S., 1956. Tempo of frequency change as a cue for distinguishing classes of speech sounds. *Journal of experimental psychology* 52, 127–137.
- Ohala, J. J., 1978. Southern Bantu vs. the world: The case of palatalization of labials. *Proceedings of the Annual Meeting of the Berkeley Linguistics Society* 4, 370–386.
- Padgett, J., 2008. Glides, vowels, and features. Lingua 118, 1937–1955.
- Steriade, D., 1984. Glides and vowels in Romanian. In: Brugman, C., Macaulay, M. (Eds.), *Proceedings of the 10th Annual Meeting of the Berkeley Linguistics Society.*

Thank [j]ou!

Acknowledgments

Lisa Davidson, Maria Gouskova, Frans Adriaans, Suzy Ahn, and members of the NYU PEP Lab

